Genetic alterations associated with acquired temozolomide resistance in SNB-19, a human glioma cell line.

نویسندگان

  • Nathalie Auger
  • Joëlle Thillet
  • Krystell Wanherdrick
  • Ahmed Idbaih
  • Marie-Emmanuelle Legrier
  • Bernard Dutrillaux
  • Marc Sanson
  • Marie-France Poupon
چکیده

Gliomas are highly lethal neoplasms that cannot be cured by currently available therapies. Temozolomide is a recently introduced alkylating agent that has yielded a significant benefit in the treatment of high-grade gliomas. However, either de novo or acquired chemoresistance occurs frequently and has been attributed to increased levels of O6-methylguanine-DNA methyltransferase or to the loss of mismatch repair capacity. However, very few gliomas overexpress O6-methylguanine-DNA methyltransferase or are mismatch repair-deficient, suggesting that other mechanisms may be involved in the resistance to temozolomide. The purpose of the present study was to generate temozolomide-resistant variants from a human glioma cell line (SNB-19) and to use large-scale genomic and transcriptional analyses to study the molecular basis of acquired temozolomide resistance. Two independently obtained temozolomide-resistant variants exhibited no cross-resistance to other alkylating agents [1,3-bis(2-chloroethyl)-1-nitrosourea and carboplatin] and shared genetic alterations, such as loss of a 2p region and loss of amplification of chromosome 4 and 16q regions. The karyotypic alterations were compatible with clonal selection of preexistent resistant cells in the parental SNB-19 cell line. Microarray analysis showed that 78 out of 17,000 genes were differentially expressed between parental cells and both temozolomide-resistant variants. None are implicated in known resistance mechanisms, such as DNA repair, whereas interestingly, several genes involved in differentiation were down-regulated. The data suggest that the acquisition of resistance to temozolomide in this model resulted from the selection of less differentiated preexistent resistant cells in the parental tumor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Basic fibroblast growth factor-like activity and receptors are expressed in a human glioma cell line.

Basic fibroblast growth factor (bFGF), a potent mitogen and angiogenic peptide, has been examined as an autocrine regulator of glioma cell growth. The addition of purified bovine pituitary bFGF to an established human glioma cell line, SNB-19, doubled the density of these cells in chemically defined medium. Half-maximal stimulation occurred at 8.2 ng/ml (480 pM). Also, human recombinant bFGF (h...

متن کامل

Relationship between LncRNA THRIL expression controlling TNF-alpha pathway in glioblastoma cell line under temozolomide treatment

Background: Glioma is one of the most common and deadliest primary malignant tumors in the brain. A large part of the gene expression products are non-coding protein RNA. LncRNA THRIL gene is an antisense LncRNA and one of the most important mediators of the NF-KB signaling pathway, that express in many tissues of the body, including the central nerve system (CNS). The aim of the present study ...

متن کامل

Distinct molecular mechanisms of acquired resistance to temozolomide in glioblastoma cells.

Temozolomide (TMZ) is an alkylating chemotherapeutic agent that prolongs the survival of patients with glioblastoma. Clinical benefit is more prominent in patients with methylation of the O(6) -methyl-guanine DNA methyltransferase (MGMT) promoter. However, all patients eventually suffer from tumor progression because their tumors become resistant to TMZ. Here, we modeled acquired TMZ resistance...

متن کامل

In Vitro Radiosensitizing Effects of Temozolomide on U87MG Cell Lines of Human Glioblastoma Multiforme

Background: Glioma is the most common primary brain tumor with poor prognosis. Temozolomide (TMZ) has been used with irradiation (IR) to treat gliomas. The aim of the present study was to evaluate the cytotoxic and radiosensitizing effect of TMZ when combined with high-dose and high-dose rate of gamma irradiation in vitro.Methods: Two ‘U87MG’ cell lines and skin fibroblast were cultured and ass...

متن کامل

Heterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistance

Glioblastoma multiforme is the most lethal of brain cancer, and it comprises a heterogeneous mixture of functionally distinct cancer cells that affect tumor progression. We examined the U87, U251, and U373 malignant cell lines as in vitro models to determine the impact of cellular cross-talk on their phenotypic alterations in co-cultures. These cells were also studied at the transcriptome level...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 5 9  شماره 

صفحات  -

تاریخ انتشار 2006